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We extend our previous analysis of closed-form equations for finite Knudsen number
flow and scalar transport that result from the Boltzmann–Bhatnagar–Gross–Krook
(BGK) kinetic theory with constant relaxation time. Without approximation, we
obtain closed-form equations for arbitrary spatial dimension and flow directionality
which are local differential equations in space and integral equations in time. These
equations are further simplified for incompressible flow and scalars. The particular
case of no-flow scalar transport admits analytical solutions that exhibit ballistic
behaviour at short times while behaving diffusively at long times. It is noteworthy that,
even with constant relaxation time BGK microphysics, quite complex macroscopic de-
scriptions result that would be difficult to obtain using classical constitutive models or
continuum averaging.
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1. Introduction
In Chen, Orszag & Staroselsky (2007) (hereafter referred to as Part 1), we derived

macroscopic flow equations for arbitrary Knudsen number (Kn) with the only
assumptions being that the microscopic dynamics is given by Boltzmann–Bhatnagar–
Gross–Krook (BGK) kinetic theory with a single relaxation time and that statistical
equilibrium existed in the infinite past. These results demonstrate the existence of such
a closed-form macroscopic dynamical description of microscopic dynamics, following
the seminal work of Cercignani (1969, 1975) (cf. also the early work of Shen 1963).
While the equations that are presented in Part 1 are integral equations in both space
and time, we further reduced them to local differential equations in space for the case
of isothermal unidirectional flow. An exact analytical solution of the latter equations
was also presented in Part 1 for the non-monotonic flow flux in a channel with
accurate prediction of the minimum mass flux as a function of Knudsen number.
However, the closed macroscopic representation derived in Part 1 for arbitrary flow
situations has a less revealing form. In the present work, we extend our previous
analysis of closed-form equations for finite-Knudsen-number flow resulting from the
same Boltzmann–BGK kinetic equation. Without approximation, we obtain a new
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set of closed-form continuum equations for arbitrary spatial dimension and flow
directionality, which are local differential equations in space and integral equations
in time. This new macroscopic representation reveals clearer macroscopic physics
and its relationship to conventionally familiar flow structures. It is noteworthy that,
even with constant relaxation time BGK microphysics, quite complex macroscopic
descriptions (Chen et al. 2003) result that would be difficult to obtain using classical
constitutive models or continuum averaging.

In addition, we obtain a closed-form macroscopic description of transport of ‘colour’
tracers by general flows of arbitrary Knudsen number within the framework of the
Boltzmann–BGK microdynamics. The colour tracers have, microscopically, identical
particle properties but are just labelled according to an internal colour label σ . The
particle distribution for a given tracer is thus defined as fσ (x, v, t), while a ‘colour
blind’ particle distribution function is simply a summation of the former over all
possible tracers,

f (x, v, t) =
∑

σ

fσ (x, v, t).

Here f = f (x, v, t) is the single-particle distribution function which represents the
density of particles in phase space (x, v) at time t.

Once again, the colour blind distribution f obeys the BGK collision model
(Bhatnagar, Gross & Krook 1954)

∂tf + v · ∇f = −f − f eq

τ
, (1)

where the (constant) relaxation time is τ , and the local kinetic equilibrium distribution
function f eq is the Maxwell–Boltzmann distribution,

f eq(x, v, t) =
ρ(x, t)

(2πθ(x, t))D/2
exp

[
− (v − u(x, t))2

2θ(x, t)

]
. (2)

Macroscopic flow variables, like the fluid velocity, are moments of f:⎧⎪⎨
⎪⎩

ρ(x, t)

ρu(x, t)

ρ(u2(x, t) + D θ(x, t))

⎫⎪⎬
⎪⎭ =

∫
dv

⎧⎪⎨
⎪⎩

1

v

v2

⎫⎪⎬
⎪⎭ f (x, v, t) =

∫
dv

⎧⎪⎨
⎪⎩

1

v

v2

⎫⎪⎬
⎪⎭ f eq(x, v, t), (3)

where ρ, u and θ , denote, respectively, density, fluid velocity and temperature. D is
the dimension of phase space (v). Notwithstanding some well-known limitations such
as unity Prandtl number, the Boltzmann–BGK kinetic model has been used broadly
for study of high Kn as well as high Mach number (Ma) flow problems (cf. Xu,
Martinelli & Jameson 1994). It is noteworthy that, even for gas dynamics at high
Ma, in which the relaxation time τ clearly depends on thermodynamic properties, the
constant τ BGK model is still quite useful to provide insight and clarity for the more
general problem.

2. General formulation of hydrodynamics at arbitrary Kn

Equation (1) may be solved by the method of characteristics so that, assuming
that the solution, as t → − ∞, the distribution function f approaches the equilibrium
distribution f eq ,

f (x, v, t) =

∫ t

−∞

dt ′

τ
e−(t−t ′)/τ f eq(x − v(t − t ′), v, t ′), (4)
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which may be rewritten as

f (x, v, t) =

∫ ∞

0

e−sf eq(x − vτs, v, t − τs) ds. (5)

As shown in Part 1, substitution of the exact solution (5) into (3) already reveals
the existence of closed-form macroscopic equations for ρ, u, θ at all Kn in a
general flow situation in d-dimensional physical space. Indeed, (5) embodies both the
equilibrium and non-equilibrium parts of f (x, v, t) and is determined (non-locally
in time and space) by the inhomogeneity in the macroscopic variables ρ, u, and θ .
This inhomogeneous (and nonlinear in ρ, u, and θ) solution should be distinguished
from that of the linearized analysis based on a homogeneous absolute equilibrium
(Cercignani 1969).

These points can be made clearer by presenting a conventional hydrodynamic
equation representation. By taking moments (3) of (1), we get

∂tρuα + ∂βσαβ = 0, ∂t [ρ(u2 + Dθ)] + ∂βqβ = 0. (6)

Here ∂t ≡ ∂/∂t , subscripts α, β denote Cartesian components and ∂β ≡ ∂/∂xβ . The
fluxes are defined as

σαβ ≡
∫

dv vαvβ f ; qα ≡
∫

dv v2vαf. (7)

Upon combining (6) and (7) with (5), a closed-form macroscopic description is
established:

∂tρ(x, t)uα(x, t) = −∂β

∫ ∞

0

ds e−s

∫
dv vαvβ

ρ(x − vτs, t − τs)

(2πθ(x − vτs, t − τs))D/2

× exp

[
− (v − u(x − vτs, t − τs))2

2θ(x − vτs, t − τs)

]
, (8)

∂t [ρ(x, t)(u2(x, t) + Dθ(x, t))] = −∂α

∫ ∞

0

ds e−s

∫
dv v2vα

× ρ(x − vτs, t − τs)

(2πθ(x − vτs, t − τs))D/2
exp

[
− (v − u(x − vτs, t − τs))2

2θ(x − vτs, t − τs)

]
. (9)

Of course, this system should be augmented by mass conservation which has the same
form as for Kn =0:

∂tρ(x, t) = −∂β

∫
dv vβ f = −∂β

∫
dv vβ f eq = −∂β(ρ(x, t)uβ(x, t)). (10)

As in Part 1, (8)–(10) are a self-contained set of integro-differential equations for the
macroscopic fields ρ, u and θ that are valid for all Kn. As mentioned in § 1, the
system (8)–(10) does not appeal to the intuition of a fluid dynamicist. For instance, as
a clear signature of the past history of particles, (8)–(10) explicitly contains integration
over the microscopic velocity v (even though it is just a dummy variable). Part 1 of
this paper contains a conversion of the macroscopic equations (8)–(10) into a set of
integro-differential equations in space that are perhaps still complicated, difficult to
manipulate, and not intuitive looking.

In this paper, we go further and obtain a closed-form macroscopic description by
carrying out the integration over the microscopic velocity v, resulting in differential-
in-x equations of motion. To do this, we note first that all spatial arguments
on the right-hand side of (8) can be made equal to x by using the spatial shift
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operator: F (x + a) = exp(a∂x)F (x) and rewriting (8) as

∂tρ(x, t)uα(x, t) = − ∂β

∫ ∞

0

ds e−s

∫
dv vαvβexp

[
−τsv · ∂

∂x

]

× ρ(x, t − τs)

(2πθ(x, t − τs))D/2
exp

[
− (v − u(x, t − τs))2

2θ(x, t − τs)

]
. (11)

At a first glance, not much is gained in this way, since the operator exp [−τsv · (∂/∂x)]
does not commute with the rest of the expression, making the whole formula
intractable. Indeed, it is not possible to combine the two exponentials in (11) and
compute it as a Gaussian integral over the phase space v, as could have done if ∂/∂x
were just a scalar and not an operator. Note in this regard that the only reason we
could exactly compute such a Gaussian integral in Part 1 is that for the special case
of unidirectional flow, the shift operator ∂/∂z commutes with uz(x, y).

However, it is still possible to perform the required integration in the general case
without manipulation of non-commuting operators. In order to do that, we assign
a different spatial argument y to all the functions to the right of the differential
operator and rewrite (8) and (11) as

∂tρ(x, t)uα(x, t) = − ∂β

∫ ∞

0

ds e−s

∫
d y

∫
dv vαvβ exp

[
−τsv · ∂

∂x

]

· δ(x − y)
ρ( y, t − τs)

(2πθ( y, t − τs))D/2
exp

[
− (v − u( y, t − τs))2

2θ( y, t − τs)

]

= − ∂β

∫ ∞

0

ds e−s

∫
d y Bαβ( y, t − τs) δ(x − y). (12)

Now everything commutes within the scope of Gaussian integration over v because
ρ, u, and θ are now functions of y, not x, and the operator

Bαβ ≡ ρ( y, t − τs)

(2πθ( y, t − τs))D/2

∫
dv vαvβ exp

[
−τsv · ∂

∂x
− (v − u( y, t − τs))2

2θ( y, t − τs)

]
(13)

is readily evaluated. To do this, we note that

〈vα1
. . . vαn

〉 ≡
∫

dv

(2πθ)D/2
vα . . . vαn

exp

[
− v2

2θ
+ p · v

]
=

∂nZ( p)

∂pα1
. . . ∂pαn

, (14)

where the generating function Z is given by

Z( p) ≡
∫

dv

(2πθ)D/2
exp

[
− v2

2θ
+ p · v

]
= exp

[
θ p2

2

]
. (15)

We also note that (15) holds for all mathematical objects p that commute with all v

and θ numbers. Using (14) and (15), we compute (13) by differentiation with respect
to p with the choice

pγ = −τs∂γ +
uγ ( y, t − τs)

θ( y, t − τs)
, (16)

so that

Bαβ = exp

[
θτ 2s2∂2

γ

2
− ∂γ τsuγ

]
ρ(θδαβ + uαuβ − θτsuβ∂α − θτsuα∂β + θ2τ 2s2∂α∂β).
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In this way, we obtain

∂t (ρ(x, t)uα(x, t)) = −∂β

∫ ∞

0

ds e−s

∫
R

d y exp

[
θ( y, t − τs)τ 2s2∂2

γ

2
− ∂γ τsuγ ( y, t − τs)

]

× ρ( y, t − τs)[θ( y, t − τs)δαβ + uα( y, t − τs)uβ( y, t − τs)

− θ( y, t − τs)τs
(
uα( y, t − τs)∂β + uβ( y, t − τs)∂α

)
+ θ2( y, t − τs)τ 2s2∂α∂β] δ(x − y). (17)

Finally, in (17), y can be integrated out resulting in a local-in-x differential form of
the momentum equation:

∂t (ρ(x, t)uα(x, t)) = −P ∂β

∫ ∞

0

ds e−s exp
[
−∂γ τsuγ (x, t − τs)

+ (1/2)θ(x, t − τs)τ 2s2∂2
γ

]
ρ(x, t − τs)[θ(x, t − τs)δαβ

+ uα(x, t − τs)uβ(x, t − τs) − θ(x, t − τs)τs
(
∂βuα(x, t − τs)

+ ∂αub(x, t − τs)) + τ 2s2∂α∂βθ
2(x, t − τs)]. (18)

Here we have introduced the ‘left-ordering’ operator P that sends all differential
operators to the leftmost part of any expression (where, in fact, they all commute
with each other), according to the Taylor expansion

PΦ

(
∂

∂x
, x

)
≡

d∏
α=1

∞∑
nα=0

1

nα!

(
∂

∂xα

)nα
[

∂nα

∂z
nα
α

Φ(z, x)

]
z=0

. (19)

The definition of the left-ordering operator P ensures that for each operator Φ and
each function A:∫

R

d y Φ

(
∂

∂x
, y

)
δ(x − y)A( y) = PΦ

(
∂

∂x
, x

)
A(x).

In this way, expressions like (18) are uniquely defined in terms of operator algebra.
(The properties of P are considered in more detail in the Appendix.) The following
compact rewriting of (18) perhaps makes a better connection with conventional
hydrodynamics:

∂t (ρuα) + PM0∂βρuβuα = − PM0∂αρθ + PM1

(
∂βρν ∂βuα + ∂αρς ∂βuβ

)
− PM2τ∂2

β∂αρηθ, (20)

where ς = ν = η ≡ τθ and

MnA(x, t) ≡
∫ ∞

0

ds sne−s exp
[
−τsu(x, t − τs) · ∇ +(1/2)θ(x, t − τs)τ 2s2∇2

]
A(x, t−τs).

(21)
Similar analysis yields a local equation for the temperature θ and the mass conserva-
tion equation (10) is, as noted above, the same as for small Kn. Indeed, the resulting
equation for θ is included in

∂t

[
ρ(x, t)(u2(x, t) + D θ(x, t))

]
= − P∇

∫ ∞

0

ds e−s exp

[
θτ 2s2∇2

2
− τsu · ∇

]
× ρ(u − θτs∇)

[
θ(D + 2) + (u − τs∇θ)2

]
(22)
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that can be also rewritten in a more intuitive way:

∂t (ρh) + PM0∇ · (ρhu) = (∂t + u · ∇)p + PM1∇ · ρη∇h

+ PM1ρν

(
∂βuα + ∂αuβ − 2

d
∇ · u

)
∂αuβ − PM1τ∇(u · ∇T ) · ρu + PM2τ∇ρη · ∇T

− PM2τ
2∇(∇T )2 · ρu + PM3τ

2∇ρη · ∇(∇T )2 + P(1 − M1)∇ ·
(

ρ
u2

2
u + ρη∇u2

2

)
,

(23)

where h = CpT ≡ (D + 2)T/2 is the specific enthalpy and p = ρT .
All terms except the last one in (20) and the last five (the last two terms on

the second and the three on the third lines) in (23) are the same as in classical
hydrodynamics, apart from the P and Mn operators. However, the other terms
are new for Kn 	= 0. Indeed, these additional terms vanish at Kn → 0 (τ → 0), while
the operators M0 = M1 → 1, as is evident from (21). Since (20) and (23) are an
exact macroscopic consequence of the microscopic Boltzmann–BGK system (1) and
(2), they may be useful for systematic analysis of macroscopic fluid behaviour for
arbitrary Kn.

3. General formulation of scalar transport at arbitrary Kn

Now we analyse generalized transport of a passive colour field, denoted A(x, t),
under the same kinetic Boltzmann–BGK framework. The master BGK equation for
the non-equilibrium single-particle density fσ (x, v, t) of colour σ is

∂tfσ + v · ∇fσ = −fσ − f eq
σ

τσ

. (24)

The equilibrium colour distribution is

f eq
σ (x, v, t) =

ρσ (x, t)

(2πθ(x, t))D/2
exp

[
− (v − u(x, t))2

2θ(x, t)

]
, (25)

where ρσ (x, t) = ∫ dv fσ (x, v, t) = ∫ dv f eq
σ (x, v, t) is the number density of particles

of specific colour σ . Notice that in the above, both the fluid velocity and temperature
are independent of colour σ , reflecting the ‘passiveness’ of the scalar. Obviously, the
overall particle distribution function and number density are results of summation
over those of all colours,

f (x, v, t) =
∑

σ

fσ (x, v, t),

ρ(x, t) =

∫
dv f (x, v, t) =

∫
dv

∑
σ

fσ (x, v, t) =
∑

σ

ρσ (x, t).

It can be easily shown that by summing over colour σ , (24) reduces to (1), and
the equilibrium distribution function (25) reduces to (2), provided the relaxation
time τσ (= τ ) is the same for all different colours. This confirms that ‘colour blind’
hydrodynamics is indeed independent of the scalar (colour) distribution. Integrating
(24) along characteristics, we obtain

fσ (x, v, t) =

∫ ∞

0

e−sf eq
σ (x − vτσ s, v, t − τσ s) ds. (26)
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Integrating (24) over
∫

dv yields

∂tρσ (x, t) + ∂βJ
(σ )
β = 0, (27)

where

J (σ )(x, t) ≡
∫

dv vfσ (x, v, t) 	=
∫

dv v f eq
σ (x, v, t), (28)

∫
dv v f eq

σ (x, v, t) = ρσ (x, t)u(x, t). (29)

Due to the overall mass and momentum conservation,

ρ(x, t) =
∑

σ

ρσ (x, t),∑
σ

J (σ )(x, t) = ρ(x, t)u(x, t).

⎫⎪⎬
⎪⎭ (30)

The macroscopic colour field A(x, t) is naturally defined as a colour-weighted density:

A(x, t) ≡
∑

σ

σρσ (x, t), (31)

and thus (27) yields

∂tA + ∇ ·
∑

σ

σ J (σ )(x, t) = 0 (32)

which is a generalized continuity equation for colour density at arbitrary Kn. In order
to obtain an explicit closed-form equation for colour density, we substitute (26) into
(32) to get

J =
∑

σ

σ J (σ ) =
∑

σ

σ

∫ ∞

0

ds e−s

∫
dv v exp[−τσ sv · ∇]

× ρσ (x, t − τσ s)

(2πθ(x, t − τσ s))D/2
exp

[
− (v − u(x, t − τσ s))2

2θ(x, t − τσ s)

]
. (33)

Next we assume that τσ ≡ τ for all colours so that
∑

σ can be performed inside the
integrals yielding the integro-differential equation:

∂tA(x, t) = −∂β

∫ ∞

0

ds e−s

∫
dv vβ exp[−τsv · ∇]

× A(x, t − τs)

(2πθ(x, t − τs))D/2
exp

[
− (v − u(x, t − τs))2

2θ(x, t − τs)

]
. (34)

Equation (34) can be transformed according to the above procedure into

∂tA(x, t) = − ∂β

∫ ∞

0

ds e−s

∫
d y

∫
dv vβ exp[−τsv · ∇]δ(x − y)

× A( y, t − τs)

(2πθ( y, t − τs))D/2
· exp

[
− (v − u( y, t − τs))2

2θ( y, t − τs)

]

≡ − ∂β

∫ ∞

0

ds e−s

∫
d y qβ δ(x − y) ≡ −∂βJβ(x, t), (35)
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where, by using (14)–(16) to perform the Gaussian integration over v, q may be
expressed as

qβ ≡ A( y, t − τs)

(2πθ( y, t − τs))D/2

∫
dv vβ exp

[
−∂γ τsvγ − (vγ − τs uγ ( y, t − τs))2

2θ( y, t − τs)

]

= A
∂Z( p)

∂pβ

∣∣∣∣
p=−τs∇+u/θ

exp

[
u2

2θ

]
= A exp

[
θτ 2s2∂2

γ

2
− ∂γ τs uγ

]
(−θτs∂β + uβ).

(36)

Integration of the right-hand side of (36) over y is done in the same way as in (17),
making use of the left-ordering operator (19) and resulting in the dynamical equation
for colour density:

∂tA(x, t) + PM0∂βuβA = PM1∂βη∂βA (37)

with the diffusion coefficient η ≡ τθ . It is important to note that the generalized scalar
transport equation is linear in A(x, t) regardless of the Knudsen number. Furthermore,
it describes evolution of a passive scalar, because the macroscopic fluid velocity and
temperature, given by (20) and (23) bear no signature of the scalar distribution.

4. Low-Mach-number hydrodynamics at arbitrary Kn

Isothermal/low Mach number and purely incompressible applications that can
involve arbitrary Kn include the analysis of flows involving microscopic/nanoscopic
geometries, biochemical flows, flows in disk drive systems, etc., but exclude aerospace
applications (cf. Toschi & Succi 2005 and Zhou et al. 2006). In this section, we derive
simplified forms of (29) and (37) that do not involve the left-ordering operator
P . These low Mach number equations are obtained by directly expanding the
Gaussian exponential in f eq in powers of Mach number U/

√
θ , noting that pressure

is introduced later as enforcing the kinematic constraint of incompressibility.
At constant temperature, (11) becomes

∂tρuα(x, t) = − ∂β

∫ ∞

0

ds e−s

∫
dv

(2πθ)D/2
vαvβ exp

[
−τsv · ∂

∂x

]

× ρ(x, t − τs)exp

[
− (v − u(x, t − τs))2

2θ

]
= − ∂β

∫ ∞

0

ds e−s Bαβ. (38)

Expanding Bαβ in powers of the Mach number gives

Bαβ =

∫
dv

(2πθ)D/2
vαvβ exp

[
−∂γ τsvγ − (vγ − uγ (x))2

2θ

]
ρ

=

∫
dv

(2πθ)D/2
vαvβ exp

[
−∂γ τsvγ − v2

2θ

]
ρ exp

[
vµuµ(x)

θ

]
exp

[
− u2

2θ

]

=

∫
dv

(2πθ)D/2
vαvβ exp

[
−∂γ τsvγ − v2

2θ

]
ρ

∞∑
n=0

1

n!

(
vµuµ(x)

θ

)n ∞∑
m=0

1

m!

(
u2

2θ

)m

=

∞∑
n=0

1

n!
Rαβµ1...µn

ρ
uµ1

. . . uµn

θn

∞∑
m=0

1

m!

(
u2

2θ

)m

≡
∞∑

n=0

∞∑
m=0

Bnm
αβ , (39)
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where the operator Rαβµ1...µn
is defined using (14), with, instead of (16), pγ = − τs∂γ :

Rαβµ1...µn
=

∂

∂pα

∂

∂pβ

∂

∂pµ1

. . .
∂

∂pµn

exp

[
θ p2

2

]∣∣∣∣
p=−τs∇

. (40)

Hence, the low-Mach-number momentum equation is, up to terms of order u2 (ob-
tained by retaining the pairs (n, m) = (0, 0), (0,1), (1,0), (2,0) in (39)), given by (38) with

B00
αβ = exp

[
λ2s2∇2

2

]
(ρθδαβ + s2λ2∂α∂βρθ),

B01
αβ = exp

[
λ2s2∇2

2

]
(δαβ + s2λ2∂α∂β)

1

2
ρu2,

B10
αβ = − exp

[
λ2s2∇2

2

] [
θ2τs(δµβ∂α + δαµ∂β + δαβ∂µ)ρ

uµ

θ
+ θ3τ 3s3∂α∂β∂µρ

uµ

θ

]
,

B20
αβ =

1

2
θ2 exp

[
λ2s2∇2

2

]
(δµβδνα + δαµδνβ + δµνδαβ)ρ

uµuν

θ2
+

1

2
θ3τ 2s2 exp

[
λ2s2∇2

2

]

× (δαµ∂β∂ν + δαν∂β∂µ + δβµ∂α∂ν + δβν∂α∂µ + δµν∂α∂β + δαβ∂µ∂ν)ρ
uµuν

θ2

+
1

2
θ4τ 4s4 exp

[
λ2s2∇2

2

]
∂α∂β∂µ∂νρ

uµuν

θ2

= exp

[
λ2s2∇2

2

] [
ρuαuβ + δαβ

1

2
ρu2 + λ2s2

(
∂α∂µρuβuµ + ∂β∂µρuαuµ

+∂α∂β

1

2
ρu2 + δαβ∂µ∂ν

1

2
ρuµuν

)
+ λ4s4∂α∂β∂µ∂ν

1

2
ρuµuν

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(41)

where λ= τ
√

θ is the mean free path. Adding up these contributions gives

Bαβ = exp

[
λ2s2∇2

2

]{
ρuαuβ + (δαβ + λ2s2∂α∂β)(ρθ + ρu2)

− θτs(∂αρuβ + ∂βρuα) + λ2s2

(
∂β∂µρuαuµ + ∂α∂µρuβuµ +

1

2
δαβ∂µ∂νρuµuν

)

− θτλ2s3∂α∂β∂µρuµ +
1

2
λ4s4∂α∂β∂µ∂νρuµuν

}
. (42)

Passive scalar diffusion in the low Ma limit is analysed in the same way. Rewrite (34) as

∂tA(x, t) = − ∂β

∫ ∞

0

ds e−s

∫
dv

vβ

(2πθ)D/2
exp[−τsv · ∇]

× exp

[
− (v − u(x, t − τs))2

2θ

]
A(x, t − τs) = −∂β

∫ ∞

0

ds e−s Jβ. (43)

Repeating the steps leading to (42) gives

Jβ =

∞∑
n=0

1

n!

∂

∂pβ

∂

∂pµ1

· · · ∂

∂pµn

× exp

[
θ p2

2

]∣∣∣∣
p=−τs∇

uµ1
. . . uµn

θn

∞∑
m=0

1

m!

(
u2

2θ

)m

A ≡
∞∑

n=0

∞∑
m=0

J nm
β , (44)
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and we need to retain only two expansion terms corresponding to (n, m) = (0, 0) and
(1, 0):

J 0 0
β = −θτs∂β exp

[
θτ 2s2∇2

2

]
A, J 0 1

β = exp

[
θτ 2s2∇2

2

]
(θδβµ + θ2τ 2s2∂β∂µ)

uµ

θ
A.

(45)

Upon substitution of (42) into (38) and (45) into (43) and (44), we obtain the
low-Mach-number equations for the flow

∂tρuα(x, t) + M l
0∂βρuαuβ = −∂αp + M l

1∇2ρνuα − λ2 M l
2

(
∂2

µ∂βρuαuβ

+ ∂µ∂ν∂αρuνuµ

)
,

p ≡
(

M l
0 + λ2∇2 M l

2

)
(ρθ + ρu2) −

(
M l

1 + λ2∇2 M l
3

)
ρςβuβ

+ λ2
(

M l
2 + λ2∇2 M l

4

)
∂µ∂νρuνuµ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(46)

and for the scalar

∂tA(x, t) + M l
0∇(uA) = M l

1 ∇2ηA − λ2∇2 M l
2∂

2
µ∂βuβA, (47)

where the low-Mach-number form of the operator (21) is M l
n:

M l
nB(x, t) ≡

∫ ∞

0

ds sne−s exp

(
1

2
s2λ2∇2

)
B(x, t − τs). (48)

Notice that the left-ordering operator P is no longer present in (46)–(47) above.
Equations system (46) represent a low (not zero) Ma approximation and should
thus be used together with the continuity equation (10). A truly incompressible,
simplified form is achieved by setting ρ = const. and removing the pressure equation
from (46). Then, the pressure is determined by the purely kinematic constraint that
a pressure field p is required to ensure that the velocity field is divergence-free; in
exact correspondence with the Kn =0, incompressible Navier–Stokes equations:

∂tuα(x, t) + M l
0(∇ · u)uα = − 1

ρ
∂αp + M l

1ν∇2uα − λ2 M l
2

(
∂2

µ∂βuαuβ + ∂νuµ∂µ∂αuν

)
,

∇ · u = 0.

⎫⎬
⎭
(49)

Equations (49) describe, in closed form, arbitrary Kn flow with density ρ = const. and
temperature θ = const. It is interesting to note that, besides higher derivative terms
typical of hyperviscous and diffusion effects, equations (46), (47) and (49) include
the so-called nonlinear tensorial diffusion terms representative of the physics in finite
Knudsen number regimes, away from the Newtonian linear stress–strain relationship.
A similar (though less general) result for the fluid momentum equation is obtained
via higher order [O(Kn2)] Chapman–Enskog expansion (Chen et al. 2004).

5. Finite-time phenomena and generalized diffusion processes for scalar
transport at arbitrary Kn

Let us now discuss the macroscopic description of the BGK kinetic system (1) at
finite times. By that we mean evolution from an initial state f (x, v, t) = f0(x, v) at
t = 0, as opposed to the case when equilibrium is assumed in infinite past, t → − ∞,
as analysed above and in our previous work (Chen et al. 2007). In this case, (1) can
still be solved by characteristics for free space but instead of (4)–(5) we now get

f (x, v, t) = f0(x − vt, v)e−t/τ +

∫ t/τ

0

e−sf eq(x − vτs, v, t − τs) ds. (50)
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If the system is in equilibrium at t = 0, f0(x, v) = f eq(x, v, t = 0), then (50) can be
recast as

f (x, v, t) =

∫ t/τ+ε

0

e−sf eq(x − vτs, v, t − τs)
[
1 + τ−1δ(t − τs)

]
ds (51)

where ε = 0+ is a positive infinitesimal number.
Equation (51) indicates that every formula derived above for the macroscopic

dynamics at arbitrary Kn with equilibrium in the infinite past applies nearly unchanged
to the initial value problem in which equilibrium is assumed at t = 0, with the only
modification being ∫ ∞

0

ds →
∫ t/τ+ε

0

ds [1 + τ−1δ(t − τs)], (52)

which needs to be made wherever integration over the past history is performed. This
means that the general equations (20), (23) and (37) stay the same but they should
be used together with the operators M defined as

MnA(x, t) ≡
∫ t/τ+ε

0

ds [1 + τ−1δ(t − τs)] sne−s exp

[
−τsu(x, t − τs) · ∇

+
1

2
θ(x, t − τs)τ 2s2∇2

]
A(x, t − τs) (53)

instead of (21). Similarly the low-Mach-number/incompressible equations (46), (47)
and (49) stay the same but should be used together with

M l
nB(x, t) ≡

∫ t/τ+ε

0

ds [1 + τ−1δ(t − τs)] sne−s exp

(
1

2
s2λ2∇2

)
B(x, t − τs) (54)

instead of (48), for the study of evolution of a system that was initially at equilibrium at
t = 0. Obviously, operators (53) and (54) reduce to operators (21) and (48), respectively,
when t → ∞.

As a specific application of such an initial value problem, we consider the time
evolution of a diffusing cloud of colour in a no-flow, isothermal arbitrary Knudsen
number medium. This is achieved by setting u = 0 and ρ, θ =const. in (37) or (47). This
case, which can be analysed in detail, corresponds to a variety of physical situations
such as the initial marking of a number of molecules by some flow-insignificant
(radioactive) tracer and observing how its concentration disperses in time. The initial
value scalar equation as in (47) for the no-flow case reduces to

∂tA(x, t) = η

∫ t/τ+ε

0

ds[1 + τ−1δ(t − τs)]se−s exp

[
s2λ2∇2

2

]
∇2A(x, t − τs). (55)

Equation (55) coincides in form with (19) from our previous work (Part 1), even
though the latter defines a macroscopic dynamics of fluid velocity of unidirectional
flow, the only difference being the substitution (52) that is responsible for finite time
effects. It is important to emphasize that (55) is not an approximation but a real
solution of (24) and (25) corresponding to a process with u = 0 and ρ, θ = const.,
namely diffusion in quiescent media (or in a solid). Observe in that regard that (55) is
a finite mean free path generalization of the common low-Kn no-flow diffusion/heat
equation ∂tA= η∇2A, to which (55) obviously reduces when τ → 0, λ→ 0.
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Now we proceed to obtaining solutions of (55) with the initial distribution
A(x, t = 0) = A0(x) that has finite support in space. At time t, this distribution is
intuitively expected to have a ‘front’ X(t) that obeys a diffusion law X(t) ≈ √

ηt at large

times t  τ and a ballistic law, X(t) ≈ cst (where the sound speed cs ≡
√

θ ≡
√

η/τ ) at
very early times t � τ . Let us now see how this intuition is confirmed by direct calcu-
lation. It follows from (55) that ∂t 〈A〉 = 0, so that 〈A〉 ≡

∫
dx A(x, t) =

∫
dx A(x, 0)

is constant in time, which means global conservation of average colour. Next, we
rewrite (55) as

∂tA(x, t) = η∇2 M(t, ∇2)A,

M(t, ∇2)B(x, t) ≡
∫ t/τ+ε

0

ds[1 + τ−1δ(t − τs)]s exp

(
−s +

s2λ2∇2

2

)
B(x, t − τs).

⎫⎪⎬
⎪⎭
(56)

The 2nth moments of A(x, t) are defined as

X2n(t) ≡
∫

dx x2nA(x, t) ≡
〈

x2nA
〉
.

In particular, the second moment X2(t) is naturally identified with the evolving front:

d

dt
X2(t) ≡

〈
x2∇2 M(t, ∇2)ηA

〉
= 2d

〈
M(t, ∇2)ηA

〉
= 2d 〈M(t, 0)ηA〉

= 2dη

∫ t+ε

0

ds [1 + τ−1δ(t − τs)] exp(−s)

∫
dx A(x, t)

= 2dη 〈A〉
∫ t+ε

0

ds [1 + τ−1δ(t − τs)] exp(−s) = 2dη 〈A〉 (1 − e−t/τ ). (57)

The first equality in (57) is obtained by using the divergence theorem and noting
that ∇2x2 = 2d . Notice that the dimension of x-space d is commonly, but not always,
equal to the phase space dimensionality D. The second equality is based on the
observation that each nonzero term in the expansion of M in powers of the Laplace
operator vanishes at ∞ because A vanishes.

It is noteworthy that the time behaviour of X2(t) defined by (57) is the same as for
the well-known telegraphers equation (Bender & Orszag 1999)

τ ∂ttA(x, t) + ∂tA(x, t) = η∇2A(x, t), (58)

recently derived in the context of nanofluidics in Yakhot & Colosqui (2007) and
applied to nanoresonator problems in Karabacak, Yakhot & Ekinci (2007). Indeed,
take the second moment of (58):

τ
d2

dt2
X2(t) +

d

dt
X2(t) = η

∫
dx x2∇2A(x, t) = 2dη 〈A〉 . (59)

The solution of the differential equation (59) satisfying (d/dt)X2(t = 0) = 0 is

X2(t) − X2(0) = 2dη 〈A〉
[
t + τ (e−t/τ − 1)

]
, (60)

which is identical to (57) at all times. However this is only an, albeit non-trivial,
coincidence, as higher spatial moments of (59) should be different from those of (55)
because otherwise the respective full solutions would coincide. By the way, solution
of (55) need not to invoke an initial condition for (d/dt)X2(t = 0) = 0. Expression
(60) confirms our intuitive picture presented above. Indeed, at t  τ , (60) yields
X2(t) ≈ 2d 〈A〉 ηt , a typical diffusion behaviour. On the other hand, when t � τ , (60)
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gives a ballistic law, X2(t) ≈ d 〈A〉 c2
s t

2, agreeing with the correct physical behaviour
for scalar evolution at very early times as follows from the classical Langevin equation
(cf. Reif 1985).

6. Discussion
In this paper, we extended our earlier formulation (Chen et al. 2007) of a theory

that is entirely macroscopic (in the sense of dealing with a few fields evolving in
physical space, viz. ρ(x, t), u(x, t) and θ(x, t)), starting from the kinetic Boltzmann–
BGK model (defined in (1) and (2)) that is defined in the phase space (x, v, t).
Such macroscopic descriptions are usually derived from kinetic theory as expansions
in low Kn. Following that path, closed-form equations for mass, momentum and
energy of (compressible) hydrodynamics are available asymptotically as Kn → 0.

Putting mathematical well-posedness issues aside, generalized hydrodynamics may be
constructed in closed form in this way that is accurate up to a desired order in Kn ≈ 1.
In our non-perturbative approach, equations (20), (23) and (37) are derived from (1),
(2) and (24), (25) without any approximation in Knudsen (or Mach or Reynolds)
number. Therefore, their well-posedness follows from that for the underlying BGK
system (cf. also Part 1). Equations (20), (23) and (37) describe physical systems under
precisely the same limitations as those of the underlying BGK dynamics, such as the
assumption of a hierarchy of relaxation times, self-consistent description based on
single-point distribution function, single relaxation time approximation, etc. In this
paper we accomplished, without approximation, the projection (or coarse graining) of
the constant τ BGK kinetic system from phase space (x, v, t) to physical space (x, t).

The non-locality in time and infinite order in spatial derivatives presented in (20),
(23), (37), (46), (47) and (49) are a clear signature of their kinetic theory origins.
Note in this regard that the presence of infinite derivatives makes these equations
effectively equivalent to closed-form macroscopic formulation in terms of integral
equations (13)–(16) from Part 1 that are not rewritten here. Therefore, (20), (23),
(37), (46), (47) and (49) only require boundary conditions to set the values of all
fields at the domain boundary, as opposed to a large number of boundary conditions
for high-order derivatives or moments (cf. Struchtrup & Torrilon 2007). We mention
only that the macroscopic equations derived here ‘remember’ their origin in kinetic
theory in such a way that bounce-back conditions on the distribution function imply
U (x) = − U (−x), if the boundary is at x = 0. For example, in Part 1 this enables
solution for channel flows using antisymmetric Fourier series. The same approach
applies to more general flow with bounce-back conditions at walls of arbitrary shape.
Future work will extend the treatment to complex finite boundaries. The key idea is
to introduce appropriate spatial delta functions following the treatment of finite time
effects in § 5.

Even though (20), (23) and (37) contain the same information as their integral-
in-space counterparts, they present a more revealing form for the macroscopic flow
structures, and might be technically more useful for studying arbitrary Kn (and non-
isothermal/compressible) flow problems in a d-dimensional space. Such studies may
include direct generalization of the study of the Knudsen minimum in a plane channel
from Part 1 or shear wave decay from equilibrium (Colosqui et al. 2009). As other
diverse applications, one can study the internal structure of shock waves.

The low Ma/incompressible description (46), (47) and (49) presented in § 4 is
perhaps the only result that is based on approximation. Indeed, throughout that
section we assume that ρ and θ are constant, except in the B00

αβ term in (41) where
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the product ρθ is allowed to vary in order to shorten the derivation. Note (as an
excuse and not as a justification) that this expansion is not in powers of Kn but
rather of Ma, so that one would follow exactly the same procedure for derivation of
incompressible, Kn= 0 classical hydrodynamics from (1). Furthermore, as discussed
in Part 1, the exact results derived here can also include various other approximations
to model broader and/or more realistic situations.

Recently (Chen et al. 2004), Boltzmann–BGK kinetics (see (1)–(2)) was suggested
as a useful framework for understanding turbulence and building turbulence models,
especially nonlinear models. Contributions to turbulent stress that are second order
in the ratio of turbulent and mean flow times (which is the effective Knudsen
number of this framework) were shown by Chen et al. (2004) to be in a good
quantitative agreement with the results that other authors obtain from entirely
different considerations. From this perspective, (20), (23) and (37), and perhaps
the incompressible version (46), (47) and (49), may be useful for extending turbulent
models of highly anisotropic/non-equilibrium turbulent flow beyond second order.
In that case, transport coefficients such as ν and η are to be identified with eddy
viscosity/diffusion coefficients that depend on mean flow and turbulence properties.

The results of § 5 can be viewed as supporting the soundness of (20), (23), (37) (and
their non-flow version (55)). Note that regular hydrodynamics may have infinite signal
propagation speed V for the heat equation. In particular, for diffusion from a point
source, V (t) is naturally identified with d(X2(t))1/2/dt that diverges as 1/

√
t as t → 0.

This type of classical physics has been studied since Einstein, and is acceptable for
coarse grained dynamics at space–time scales larger than mean free path since it does
not account for the fact that individual particles cannot propagate faster than ballistic-
ally. The system (20), (23) and (37), which is obtained non-perturbatively and pretends
to be exact at all scales must be intrinsically free of such a divergence in propagation
speed, without appealing to the argument that ‘some kinetic or other microscopic
theory will regularize it’. Indeed, from (57), V (t) = cs for times smaller than τ .

In statistical physics, the general pattern is that while the description of a given
system at a more microscopic level contains more information, a more macroscopic
description conveys better insight about the general patterns of the system’s coarse-
grained behaviour. For a fluid system, a macroscopic description usually has a
narrower range of physics applicability than its microscopic parent, due to various
coarse-graining approximations used. Therefore, a macroscopic description without
approximation of its underlying microscopic physics origin may be of some theoretical
interest, as it gives exact, undistorted information relating the detailed microscopic
dynamics and its macroscopic consequences.

This work is supported in part by the NSF.

Appendix. The left-ordering operator P

The left-ordering operator P (see (18)) used extensively in §§ 2 and 3 above is
essential for development of the equations for arbitrary Knudsen number flows. It is,
therefore, helpful to consider in more detail here some of its properties.

Consider a ring R consisting of indexed elements zα and xβ such that all z-elements
commute and all x-elements commute but z-elements and x-elements do not commute
with each other. For a given field K, this induces a (graded) algebra W whose elements
E are sums of words W = zzx . . . z.. scaled by coefficients λ in the field K. We define
an operator P as left ordering with respect to z if it acts on each element E by
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moving all the z-elements to the left side of each word W of E (where they of course
commute). The action of P is compatible with the underlying structure of W (e.g.
(P(A + B))C = (PA)C + (PB)C, P(αA + βB) = α PA + β PB, . . . and so on). Note
also that PP = P , PAPB = PAB , and a useful property that the commutator is
always zero under the action of P:

P[A,B] = P(AB − BA) = PAB−PBA = 0, (A 1)

even when [A, B] is not 0.
Our intended interpretation is that R is a ring of differential operators (zα = ∂/∂xα)

and functions of x, K is the real or complex field, and that words W are generated
by power series expansion of formal expressions F that contain differential operators.
While functions F are assumed to be infinitely differentiable in z in a formal way, the
issue of how would such power series converge is outside the scope of defining rules
of this formal calculus. To demonstrate that using left-ordered operators is actually
easier that the usual differential operator calculus, consider a gas dynamics example
involving an algorithmic sequence of events needed to produce an expansion term
that is, say, order n in Ma and order m in Kn:

Using a (hypothetically existing) theory involving regular differentiation:
(i) Formally expand in order to collect all powers n in U and powers m in τ

(or λ), being careful about relative placement of differential operators according to
conventional rules;

(ii) Let each differential operator act on everything to the right of it.
Using left ordering of differential operators:

(i) Formally expand to order n in U and order m in τ (or λ) while treating all the
differential operators as formal symbols that commute with everything else, thanks
to (A 1). Combine terms as desired for clarity or ease of manipulation;

(ii) Apply P sending all the differential operators to the left in an arbitrary order.
(iii) Let differential operators act upon the right side according to conventional

rules. This of course can be also done in an arbitrary order.
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